FLOW OF VAPOR THROUGH A QUASICLOSED
VOLUME WITH A TEMPERATURE GRADIENT

Yu. Z. Bubnov, M. N. Libenson, UDC 536.423.4
M. S. Lur'e, and G. A. Filaretov

Results of a theoretical and experimental study of the flow of cadmium sulfide vapor through
a cylindrical chamber are cited, with condensation and reevaporation of vapor from the
chamber walls taken into account.

In the study of the kinetics of formation of vacuum condensates in an "open" volume, the concept
of transport of matter by a molecular beam is often resorted to. Given the differences between the method
of preparation in a quasiclosed volume and inan "open” vacuum, this paper confronts the problem of ex-
perimental investigation of the spatial distribution of condensate thickness (condensation rate) in con-
structing a qualitative model of the mechanism underlying the transport of material evaporated in a quasi-
closed volume. '

EXPERIMENTAL METHOD

The quasiclosed volume is formed by a split graphite cylinder d = 50 mm in diameter and L = 80 mm
in length (Fig. 1), the bottom functioning as an evaporator.

The end surfaces of the cylinder are heated by two distinct radiation heaters which bring about the
requisite temperature distribution throughout the effective volume. Vertical grooves were machined in the
side walls of the cylinder to accommodate the devitrified glass ("sitall") substrates. Sitall plates were
placed in the radial cross sections (on a helical line) parallel to the base. The materials to be evaporated
in the experiment were cadmium sulfide, cadmium selenide, and cadmium telluride. Since all of these
materials exhibit qualitatively identical behavior, cadmium sulfide alone will be singled out in the further
discussion of the experimental results. The evaporation temperature T, of the initial material ranged from
550 to 750°C; the temperature of the top of the chamber varied from 350 to 500°C respectively (the tem-
perature distribution along the cylinder walls was linear). The condensation time was constant (30 min)
in all the experiments.

Figure 2 shows the distribution of condensate thickness in the radial cross sections of the cylinder,
determined on the vertically positioned plate. It is clear that the film thickness remains constant in each
such cross section, and depends solely on the distance the particular cross section is removed from the
evaporator (graphite cylinder bottom). A similar pattern was observed when the sitall substrates were
laid horizontally.

The problem probed in the investigation of condensation in a closed crucible can hence be treated as a
one-dimensional problem, and the distribution of the parameters of the vapor produced from the material
being evaporated is investigated as a function of only one coordinate (the length of the crucible).

It is clear from Fig. 3 that condensation of vapor occurs when the temperature of the substrate falls
below a certain critical temperature T,,.. The existence of this critical condensation temperature stems
from the fact that the average "ifetime" of the particle adsorbed on the surface (prior to reevaporation)
shortens with increasing temperature of the substrate, while T, increases with increasing vapor density,
on the other hand [1].
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Fig. 1. Diagram of experimental arrangement: 1) chamber heater;
2) chamber; 3) substrate; 4) graphite inserts; 5) substrate heater
unit.

Fig. 2. Distribution of thickness of condensate in radial cross sec-
tions of chamber, removed from chamber bottom by distances: 1)
30 mm; 2) 40 mm; 3) 50 mm (1, 4; d, cm).

It is clear from Fig. 3 that the ratio Top./ T, increases linearly as the evaporation temperature T,
rises. Figure 4 shows the distribution of condensate thickness over the length of the cylinder at
two evaporation temperatures of the cadmium sulfide. The dependence h = f(x) rises at first as the dis-
tance from the evaporator is increased, then attains a maximum and declines subsequently; the position
of the maximum shifts in the direction of the top of the cylinder as the evaporation temperature increases.
The condensate thickness increases with Ty, so that the ratio of film thicknesses at the maximum and in
the cross section of the cylinder top declines.

DISCUSSION OF RESULTS

The most interesting features of the vapor flow and condensation conditions in the quasiclosed vol-
ume are the presence of a region in the initial stage of the flow patterns where there is no layer of con-
densate at all, and the clearly defined maximum in the rate of condensation on the walls at some distance
from the evaporator (Fig. 4). To account for these features in qualitative terms, it is sufficient to assume
that the mass transfer of vapor from the walls is determined by the independent action of two distinet
factors: 1) condensation of particles from the directed flow of vapor moving along the walls of the cyl-
inder; and 2) partial reevaporation of the condensate from the walls back into the stream. The conden-
sation rate vy, characterizing the first factor depends on the density and temperature of the vapor and
on the velocity of the stream, while the reevaporation rate v, characterizing the second factor depends
solely on the wall temperaturet Ty, and this last dependence is a very sharply expressed one:

T\

U= (T) exp <—- ~%—) s (1)

where £(T) is a much weaker function of the temperature than exp (—T*/T).
The resulting rate of vapor condensation on the walls is determined by the straightforward equation
| v {x) =g, (%) — v d%)- ‘ (2)
This expression can also be restated for specific mass flows:
[ () = L %) — fe(®)- 3)
The variablej,ois related to T and to pg(T) (e.g., see [2]) by the formula

. /R’T
T =0 N8|/ = (e (1) g

tWe assume that the heat imparted to the wall as the vapor condenses does not affect the thermal con-
ditions of the wall. The problem is treated as one of stationary condensation conditions.
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Fig. 3. Theoretical (1) and experimental (2) dependence
of ratio Tey/ T, on evaporation temperature of cadmium
sulfide (T, °K).

Fig. 4. Distribution of thickness of cadmium sulfide con-
densate over height of crucible at different evaporation
temperatures: 1) T, = 600°C; 2) Ty = 550°C; a) horizontal
position of substrate; b) vertical position of substrate;
t, p;x, mm).

The maximum mass flow in condensation j,g, can be determined, by analogy with Eq. ), as

RTy 5
S (5

jCO(TV)=p(TV)I3]

Consequently, if jeo[Ty(X)] > jpolTw(x)], therewillbe no net condensation of vapor on the walls over
the entire stretch of cylinder from the initial cross section (x = 0) to some cross section (x = x;), where

jco[n (xo)] = jre[Tw(xo)}’ Tw(xO) = Tcr' (6)

In our case, where the vapor forming in the initial cross section of the cylinder (x =0, T = Ty = Ty)
is capable of expanding freely into the surrounding space, we have, always:

o [Ty (0] <pq [Ty(O)] = oy (T,

Consequently, along the initial path of vapor escape in the cylinder, with the wall temperature of the cyl-
inder declining smoothly down from the temperature T, there will be no net vapor condensation, since
all of the condensate becomes reevaporated from the "hot" walls.

Starting with the cross section x = X, some fraction of the condensable particles is retained by the
surface of the walls, and with increasing distance from the evaporator this fraction increases, while the
contribution made by reevaporation of particles to mass transfer on the walls diminishes abruptly because
of the decline in the temperature of the walis (see Eq. (4)). The condensate layer on the walls increases,
and the vapor stream begins to become depleted. Naturally, the thickness of condensate on the walls, after
passing through a maximum, begins to decline. It is clear from these arguments that the linear dimension
of the interval of rise in net condensation can be estimated qualitatively as the length of the effective re-
evaporation zone I = X; — X¢ such that the condition

frel¥o) _ (7)
jre(xi) :

is satisfied. Substitution of Eq. (4) into Eq. (7) yields
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where T{ is the wall temperature at x = x;. After straightforward transformations, we have
T*T
Ti= O
Toe +T7

Recalling that T* > Tep, and expanding the function in a series in powers of Tgp/ T*, we find, in an ap-
proximation;

Ter \
=T (1_f.. (8)
1 cr g th’

In the case of a linear temperature gradient along the cylinder

dT . dT,
Toa=Ty—x, dxw’ Ti=Ty—x dxw %
Substitution of Eq. (9) into Eq. (8) yields
{eT,)?
Xy :xo‘lr-;‘é)%ﬁ: (10
T* w
dx

where € = Tqy/ T

It is clear from Eq. (10) that the effective reevaporation zone becomes further removed from the
evaporator to the extent that the temperature T, rises, and in inverse proportion to the temperature gra-
dient along the cylinder.+ This is clearly confirmed by the above experimental data. As numerical cal-
culations and comparison with experiment have shown, the coordinate x, fits quite closely to the position
of the maximum vapor condensation rate.

This means that we can distinguish three intervals over the entire region of dispersion of vapor in
the cylinder:

1) 0 =x = xy — reevaporation dominates over condensation and no film settles on the walls;

2) X < x = x; ~ condensation, while dominating over reevaporation, is accompanied by only in-
significant depletion of the stream, so that the thickness of the condensate film increases with
increasing distance from the evaporator;

3) x; < X —reevaporation of material from the cylinder walls and back into the stream is virtually
nonexistent, and the stream becomes depleted with partial condensation of vapor on the walls,
resulting in a lessening of the thickness of condensate film with increasing distance from the
evaporator.

It must be emphasized that this qualitative explanation of the observed features of condensate for-
mation on the cylinder walls is presented without reference to the vapor flow pattern.

A quantitative description could be achieved only by attempting to cope with the vapor flow mechanisms
The criterion for realization of any particular vapor {low mechanism is the relationship between the free
path length (A) of atoms (or molecules) in the vapor between collisions and the length of the effective re-
evaporation zone ! and the linear dimensions of the chamber (length L and diameter d of the cylinder). When
the evaporator temperature is high (T, ~ 800 to 1000°K in the case of CdS) and the vapor pressure p ~ 107!
to 1072 torr, when A = (1-5)-107! cm [3] and A «< L, A « d and, moreover, I < L, the gas-dynamic flow
mechanism is realized.

In this case vapor flow comprises gas-dynamic expansion into a vacuum with condensation on the
cylinder walls, and a local Maxwellian distribution of vapor particles with respect to velocities in a system

T Note that Eg. (10) does not deal with the effect of several other factors, above all the cylinder diameter,
on the value of x;.
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of coordinates moving along the cylinder walls at velocity u prevails at each point of space occupied by the
vapor. In the initial (in the gas-dynamic sense) cross section, the velocity (u;) is equal to the local speed of

sound c; [4]
hy = 0o = l/ y—El (11)

Over the interval 0 < x = x;, where vapor flow takes place without condensation, the flowspeed does not
vary and remains equal to ¢,. When x; < x, when the flow begins to be subject to "discharge" effects be-
cause of the net condensation, the group velocity of the stream rises, and the temperature, density, and
pressure of the vapor in the stream all decline [5]. Solving the gas-dynamics equations for a stationary
flow with condensation and reevaporation of particles from the confining walls taken into account, in the
one-dimensional approximation,t we can find the profiles of the gas-dynamics variables we are interested
in. We shall not cite this solution here (that will be done in a separate article), and we need only deter-
mine the value of x; and the critical condensation temperature.

To do this we have to know the vapor parameters in the initial gas-dynamic cross section. This cross
section is separated from the evaporation surface by a gas-kinetic layer of thickness 2A to 3A [6] within
which the particles come to an equilibrium velocity distribution in the stream moving at the flowspeed u
= ¢; because of collisions between the particles (noncentral particles in the first instance). The problem
of how to search out some relationship between the particle distribution functions on the inner and outer
boundaries of the gas-kinetic layer and how to determine the initial gas-dynamic parameters of the vapor
as it expands into the vacuum has been solved only recently [6, 7]. We make use of these results in speci-
fying the initial parameters of the vapor:

T,=07Ty 0,==ps(Ty). (12)
Then, making use of Eqs. 4), (5), (6), (12), we get:
3.64ps (Ter )V Ter = 05 (Ty) V' Ty (13)

In the case of a two-atom vapor, according to [2], when y = 7/5,

A T*
0 (T = 773 exp(~ T ) (14)

where A is a constant characterizing the material to be evaporated.

We learn from Eqgs. (13) and (14) that the critical condensation temperature Tqy can be determined

from the equation
T* Ter \? T*
3.64exp| — = e Vexp | — ) 15
o= ) (T) P ( T, (19

Ccr

When Tgp « T, the solution of Eq. (15) can be stated in the form

T*

Tr :TO(I—I.B 7y ) (16)

from which we infer that, when T, « T*, the critical condensation temperature does not differ too radically
from the evaporator temperature.

Of course, the sublimation energy of the thin film (E) is somewhat lower than the sublimation energy
of the bulk material (E). Taking this into account, we have, instead of Eq. (16),

\

T
Tcr:xTO(l—l.?; =) 1n

Processing of experimental data on the basis of formula (17) showed that » = 0.983 in our case.

+ The one~-dimensionality of the problem is made clear by the constraint A « d. That the vapor parameters
are constant over the cylinder cross section has been confirmed experimentally (see below).
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The experimental and theoretically predicted dependences (the latter using formula (17) at » = 0.983)
of the ratio T/ Ty as a function of T are plotted in Fig. 2. It is clear in the diagram that the theoretically
predicted and experimental dependences Ter/ Ty = £(T) fit closely in practice. We can also find, from
formula (17), the coordinate of the cross section up to which condensation on the cylinder walls is absent.
In the linear fall-off of the temperature along the cylinder (dTy/dx = const), we have

To —_ Tcr
ATy
dx

Xo =

and hence, when formula (17) is taken into account, we obtain

2

_RU—M+L&7%

%o = T,

dx
The conditions of overflow of vapor as a continuous medium flowing into a vacuur:. iuvestigated in
this paper, can go over smoothly into another set of limiting conditions. When x > x;, the vapor can be-
come depleted te such an extent because of condensation on the cylinder walls that the free path length
of the molecules becomes commensurate with the cylinder dimensions, and further motion of the vapor
will comprise a directed molecular beam.

(18)

It is clear in Fig. 4 that the h = £(x) dependence for the vertically positioned plates experiences a
break, and the decrease in the thickness of the condensate as the distance to the top of the chamber be-
comes narrowed down takes on a more abrupt form, while the h = f(x) dependence tends smoothly to satura-
tion in the case of backing plates positioned horizontally. This is the characteristic criterion of the molec-
ular beam, since the condensation rate for the molecular beam decreases as the condenser surface becomes
further removed from the normal to the direction the beam is moving in. As the evaporation temperature
rises, the replacement of the vapor flow mechanism must take place at large x values, and this has also
been observed experimentally (Fig. 4).

NOTATION

X is the coordinate reckoned from hottom of chamber;

Ty is the evaporator temperature;

Ty is the temperature of cylinder walls;

T is the temperature of evaporation surface;

Ty is the vapor temperature;

Tep is the critical condensation temperature;

E, E' are the energy of evaporation of one mole of material at 0°K, of bulk material and of thin
film;

T* = E/R is the characteristic temperature;

R is the gas constant;

w is the molecular weight of material;

A is the mean free path length;

Py is the density of material;

o(Ty) is the vapor density;

Pg is the density of saturated vapor;

u is the flowspeed;

o is the local speed of sound in vapor;

uy, Ty, o are the flowspeed, temperature, and density of vapor in initial gas-dynamic cross section;

0% is the adiabatic exponent;

Veos Vre are the condensate rate and reevaporation rate;

jcor Ire are the specific mass flows due respectively to condensation and reevaporation;
is the sticking coefficient of molecules adhering to evaporation surface;

h is the condensate thickness.
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